Comparative Analysis of Behavior Using Ontologies

Peter Midford University of Kansas Motivation

Ontologies and Ethograms

Comparative methods

Social Learning

Florida scrub-jay

Analyzing and Representing Multi-modal Behavior

H. clypeatus - D. Elias

Complex Behavior

- Characters/Homologies not identified
- Characters of interest
 - Global (e.g., complexity)
 - Context Dependent

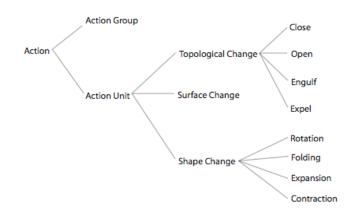
Behavior is a process

- Organisms (or their parts) are participants or agents
- Representing time
 - Temporal ordering
 - Overlap
 - Synchronicity
 - Temporal Whole/part relations

Ontologies and Ethograms

SABO

owl:Thing dolce:Abstract Behavioural_Functions Agonistic_Appeasement_functions Agonistic_functions Antipredation_functions Appeasment_functions Communication_functions Courtship_Appeasement_functions Food_And_Food_Related Intergenerational_functions Sex_Related_functions Social_Integration_functions Territory_Maintenance Thermoregulation_functions Hypothesis dolce:Accomplishment dolce:Biological-Process dolce:Non-Agentive-Physical-Object dolce:Organism dolce:Perdurant dolce:Physical-Object 🔻 🦲 dolce:State Sex Sittina Standing Hibernating Alive Dead Asleep Awake Gestating | luvenile Lying_down


Tornid

- Developed for categorizing images of behavior
- Implemented in OWL, contains 67 terms
- Tested by annotating video clips of tool use by captive New Caladonian crows and behavior of captive mink and free living rats
- Built on an upper-level ontology of everything (DOLCE-Lite)

http://www.bioimage.org/pub/SABO/SABO_cornell_final.pdf

EKB Upper Level Ontology

- Focus taxonomy of simple actions on topological changes
- Intended to facilitate comparative methods

Midford (2004)

ABO Core

```
▼ Model

   ▼ root of ABO_Core
     ▼ Behavioral_Acts
        ► Reproductive_Sexual_acts
        ▶ Locomotion
        ▶ Excrete
        ► Make_contact_with
          Produce_light
        ▼ Body_part_movement
           ▶ Move_mouth_parts
             Inflate_body_part
           ▶ Move_head
             Other_moved_body_part
           ► Move_limb_appendage
        ▶ Produce_sound
        Secrete
        Life_history_transitions
        ▶ Color_change
        ▼ Static_pose
             Sit
             Stand
             Lie
             Hang
          Produce_electric_field
        ▶ Other_whole_body_movement
        ▶ Group_actions
      ▼ Behavioral_Function
        ▼ Functional_Context
           ▶ Territoriality
           ▶ Maintenance
           Antipredation
           ► Nutrient_acquisition
             Migration
           Reproduction
           ▶ Social_integration
          Tool_preparation
        ▼ Signal_exchange
             Emission_of_signal
             Reception_of_signal

▼ Play

             Social_play
             Motor_development_play
        ▶ Agonism
```

- Developed at workshops in 2004, 2005
- Current version developed from extensive editing following 2005 workshop
- Current version is a strict taxonomy of 292 terms
- Separate trees for actions and explanatory functions

http://www.ethodata.org

Ethogram

a catalog or table of all the different kinds of behavior or activity observed in an animal.

Groom:

Allogroom: One animal manipulates the fur, extremity, or orifice of another. During a grooming episode, the groomer often looks intently at the portion of the body which is being manipulated.

Grooming may include both manual and oral components.

Manual: Individuals use the fingers and whole hand to manipulate and remove materials.

Oral: Use of mouth and lips to manipulate and/or remove materials.

Mutual groom: Same as above, except the two animals groom each other simultaneously.

Allomanipulate: One animal rubs, pats at, or fondles the fur, orifices, or extremities of another (not including genitalia).

Agonistic:

Submissive/avoidance:

Turn away: An animal moves its body so that it is oriented away from another, but does not travel.

Avoid: An animal moves out of the path of an approaching animal or takes a less direct route around that animal.

Hide: An animal removes itself from the view of another. This may occur following an aggressive attack or threat.

Crouch/crawl: This behavior can take two forms: 1) An animal bends all four limbs, presses its ventrum to the ground, and may try to travel while in this position; or 2) the animal may crouch while in one of the sitting positions by lowering the head, hunching the shoulders, and often covering the head with an arm.

Present: May take two forms. One form is similar to a sexual present, but is much briefer. It may be accompanied by a series of brief glances directed towards the presentee. An animal may also "offer-up" or present an arm to the presentee. (specify act)

Run away: An animal moves rapidly (with a running gait) away from another.

Excerpted from: "Collection of Gorilla Ethograms, compiled by: The Gorilla Behavior Advisory Group [affiliated with the Gorilla SSP]

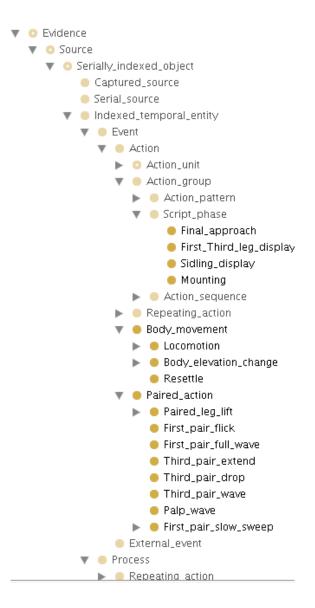
Jackie Ogden, Zoo Atlanta and Georgia Institute of Technology, Deborah Schildkraut, Ph.D., Boston MetroParks Zoos Co-chairs

Ontology as Ethogram

- Terms with definitions and computable relationships
- Other attempts to formalize 'ethograms'
 - EW Movement notation (Golani 1976,1978)
 - "Standard Ethogram" (Schleidt et al. 1984)

Loggerhead (*Caretta caretta*) nesting

EKB_thina Location ▼ ○ Tangible Physical_object Stuff ▼ 0 Intangible ▼ ○ Process ▼ ■ Event Action Action_group Action_Pattern Script_phase Approach_beach Ascend_beach Wander_over_beach Make_body_pit Dig_egg_chamber Lay_eggs Fill_and_pack_chamber Cover_body_pit Return_to_surf Depart_from_beach Return_on_same_track Initial_sand-flicking Action_sequence Simple_script Loggerhead_nesting_sequence Action_unit Topological_change Close Engulf Expel Open Shape_change

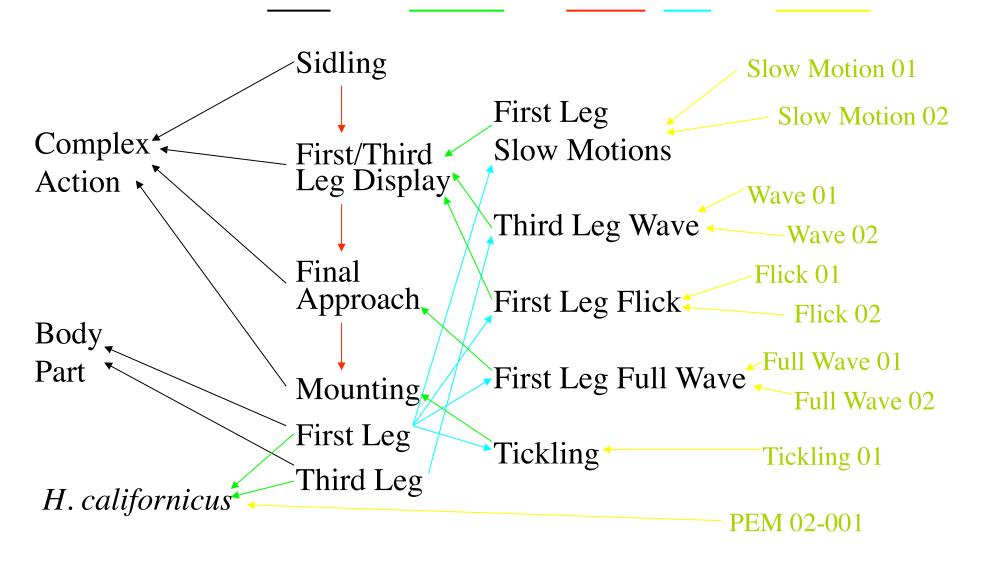

- Built with Protégé
- 321 Terms
- 41 Relations

Jack P. Hailman

http://mesquiteproject.org/ontology/

Habronattus courtship

- Built directly from video clips of seven species using Protégé and iMovie
- Currently two complete (*H*. *californicus*, *H*. *clypeatus*) and one partial (*H*. *formosus*)
- H. californicus ontology has 140 terms and 35 relations


http://mesquiteproject.org/ontology/

Other taxa-specific behavior ontologies

- Bowerbird courtship
 - Scholes (2006, 2008)
- Social Insect Behavior
 - Smith (2007)

Schematic Ontology of *Habronattus* courtship

A set of terms+taxonomy+whole/part+other relations+individuals

Ethosearch - an Ethogram Database

- Outgrowth of Ethogram.com
- Currently soliciting ethograms for inclusion
- Web portal has been prototyped

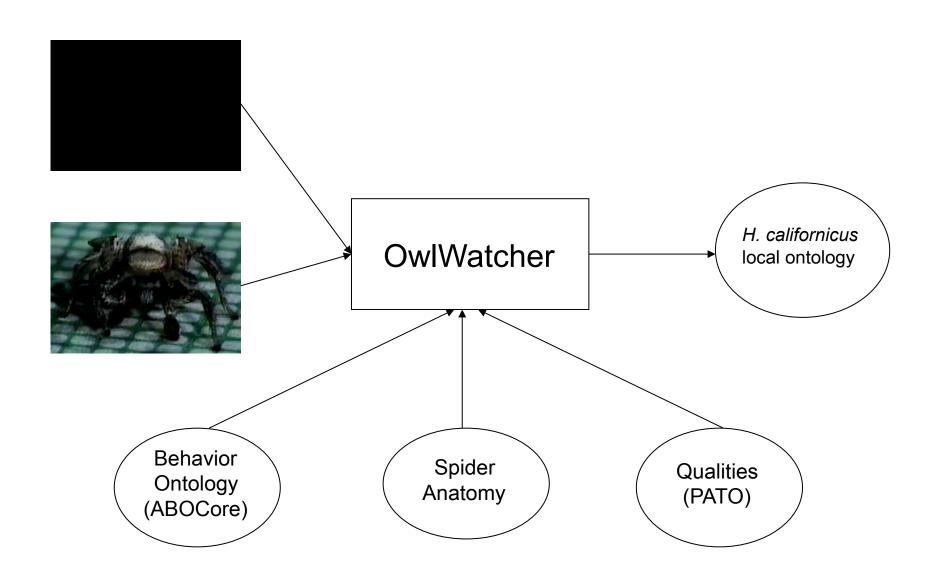
How Ethosearch Works

- Text-based descriptions are attached to a standard hierarchy (ABOCore)
- Allows user to see descriptions of the same behavior in the same species side-by-side
- Effort also includes updating and adding text definitions to ABOCore
- Will support on-line submission
 - Quality of submission issues

Ethogram

Ontology

Ethogram

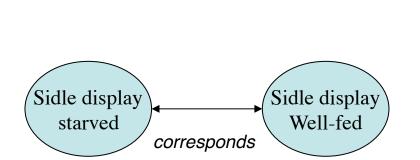

Ontology

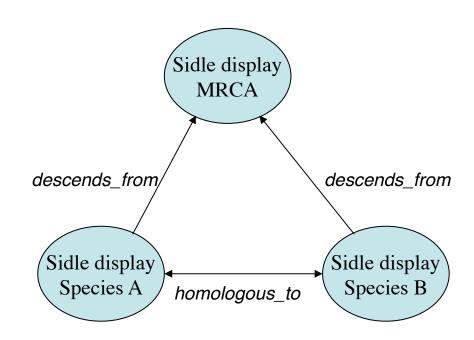
Database of Individual(s): Events and organisms

OwlWatcher

- Combines Video Playback with Ontology construction
- Ontology is dependent on other ontologies, but is a separate entity
- Ontology terms used to annotate behavior events, which are individuals
- Captures descriptions prior to characters

Comparative Methods


Alignment


- Without trees (similarities)
- With trees (homologies)

Scoring

- Extract to matrix
- Ontology-based methods
 - Counting (ontology parsimony)
 - Model-based methods

Alignment

Non-tree Alignment Tools

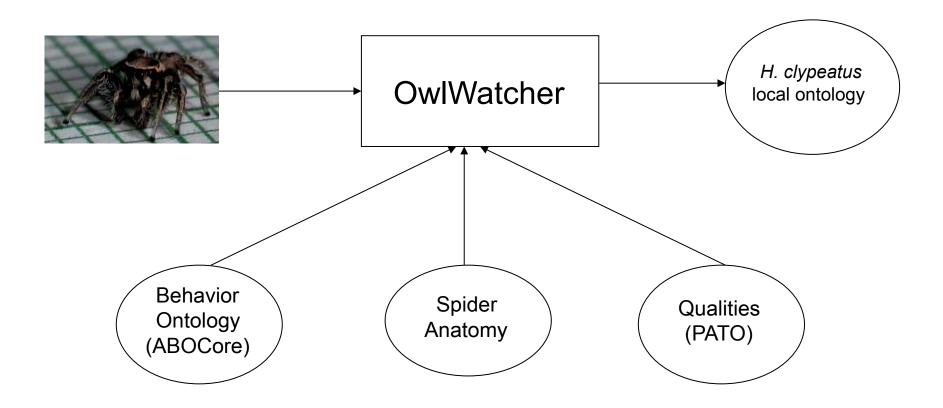
- Tools for comparing and merging ontologies already exist
 - Prompt: a tool for merging and comparing ontologies in Protégé (general ontologies may be harder than comparing phenotypes of closely related species)
 - COBrA: an OBO-based tool for editing/comparing pairs of ontologies (http://www.xspan.org/cobra/index.html)
- These tools produce lists of corresponding (aligned) terms

Approaches to tree-based alignment

- Simple shared ontology ('Uberon')
- One ontology per species
- Tree differences -> ontology modification
- Any of these methods can use homology information from
 - Explicit assertions
 - Inference from other information (e.g., lexical similarity of term names)

Simple shared ontology ('Uberon')

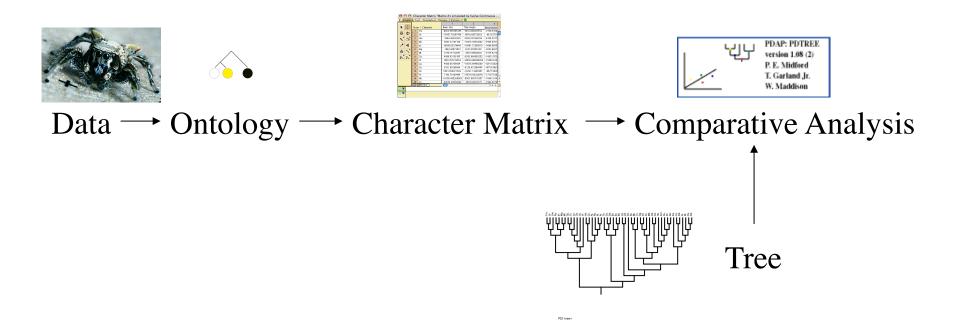
- Simple, 'non-controversial' tree
 - Textbook level tree relating model organisms
- Allows construction of shared ontology by hand
- Not easy to change tree


One ontology per species

- Requires computationally expensive merge
 - n ontologies
 - Phylogeny for n species
- Computationally intensive, but may be tractable for small trees
- Changing the tree, or multiple trees requires making a new merge

Conversion using alternative tree

- Procedure
 - Construct a shared ontology for one well resolved tree (base tree)
 - Compare alternative tree to base tree
 - Modify ontology to reflect the differences in the trees
- Not necessarily possible or easier than merging individual ontologies

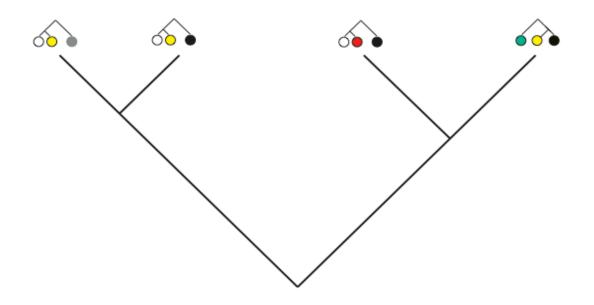


Comparative Methods for Ontologies

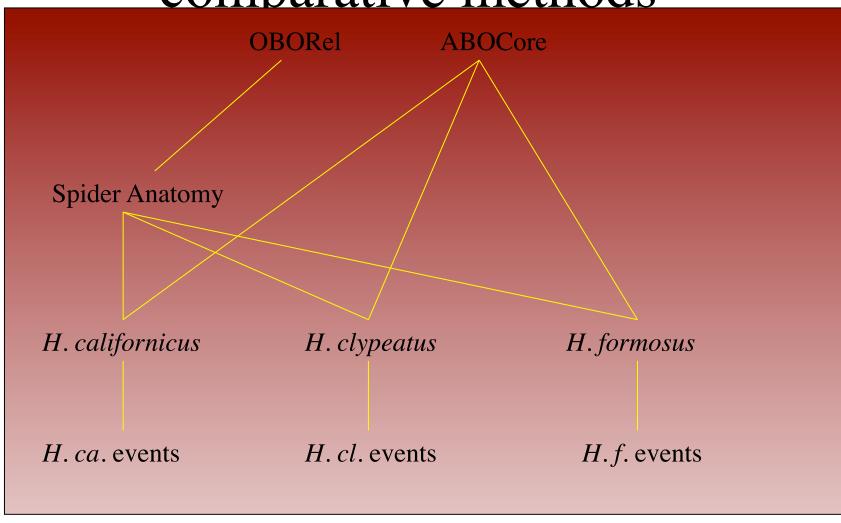
- 1. Extract ontology to data matrix, proceed as usual
- 2. Compare ontologies directly
 - 1. Model-free methods
 - 2. Model-based methods

Extract Ontology to Data Matrix

Extract Ontology to Data Matrix

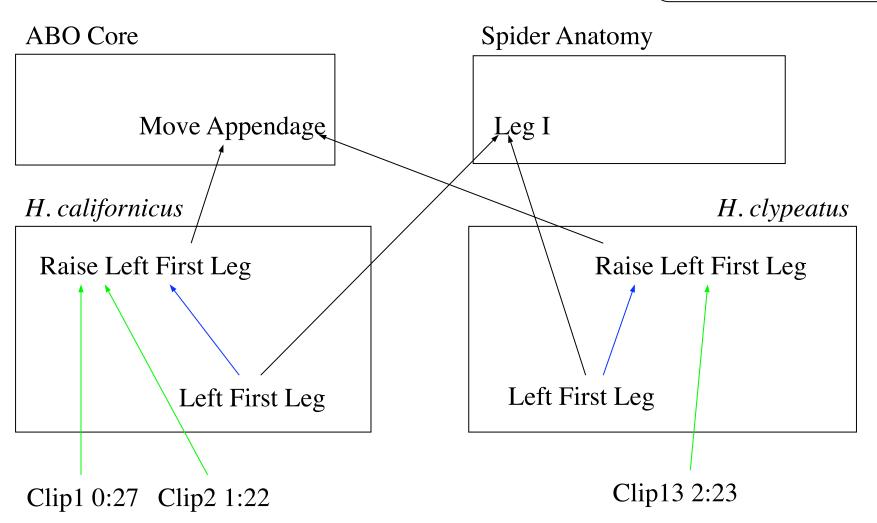

Advantages

- Straightforward
- Minimizes homology issues

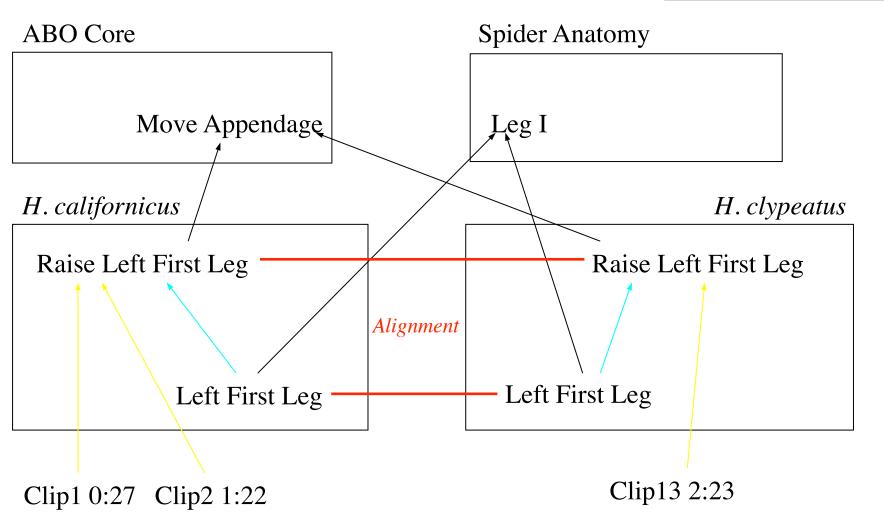

Disadvantages

- Ignores the structure in the ontology
- Hides assumptions of character homology and independence

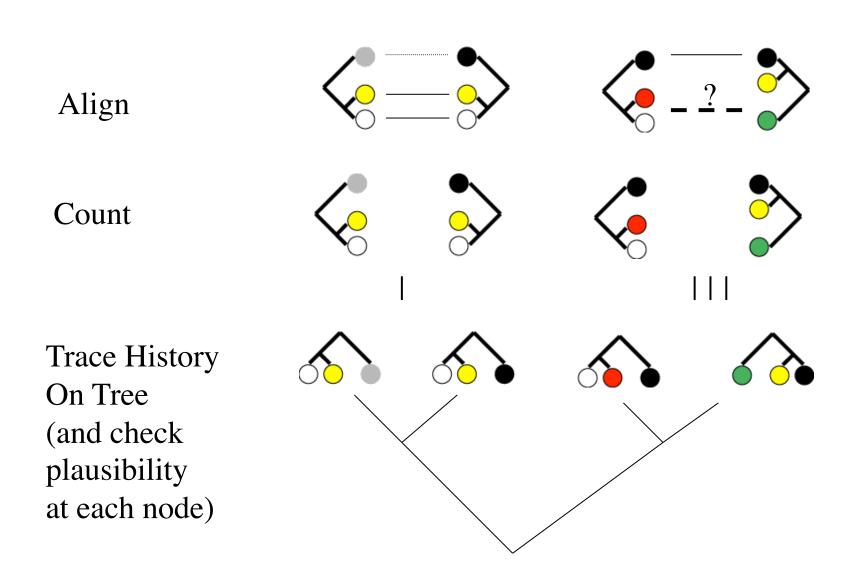
Can we compare subgraphs within ontologies directly?



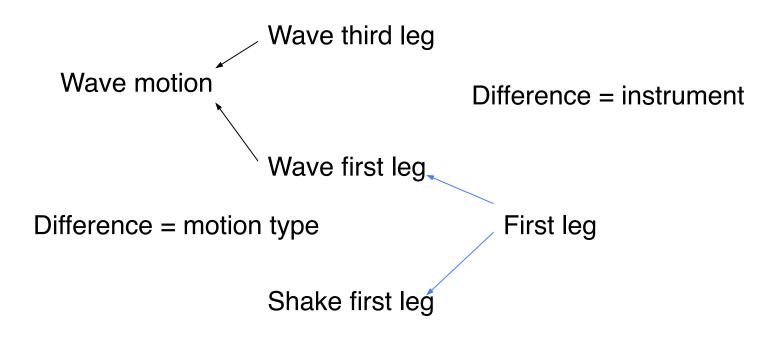
Structuring ontologies for comparative methods


Subgraphs for comparative methods

is a ____ participant in ___ instance of ____



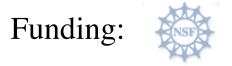
Subgraphs for comparative methods


is a ____ participant in ____ instance of ____

Compare and Count differences

Counting differences

Count differences, possibly weighed by semantic distance between differing concepts


Model-based methods

- Upper ontologies can provide terms for building models
- Model itself might be reversible
 - Insert contiguous subsequence
 - Delete contiguous portion of sequence
 - Reversibly modify an individual element
- But changes proposed by model may have consequences...
 - Propagated changes through a portion of the ontology
 - Constraints rejecting a modified subgraph that represents an impossible situation

Acknowledgements

- Phenoscape team
- Jack Hailman
- Wayne Maddison
- Anne Clark

- Jack Bradbury
- David Shotton
- Martín Ramírez
- Sue Margulis

Approach to comparative questions

- Focus on relatively small number of related species
- Use base ontologies of behavior and anatomy and build separate ontologies (= ethograms) for each species
- Comparative methods built on process of merging and aligning these ontologies

Traditional comparative approaches to behavior

- Simple discrete or continuous variables
 - Martins (1996)
- Correlation methods
 - Pagel (1994)
 - Independent contrasts

Model of complex behavior

- Behavior should be broken down as sequences of partially ordered events
 - At the instance level, always represented as sequence
- At the class level, sequences might be represented directly, or using a 'Markov' formalism

Molecular and Behavioral Sequences

- Long sequences
- Small number of types (e.g., 4 or 21)
- Elements in the sequence have no (relevant) parts or subsequences

- Short sequences
- No fixed limit to number of types
- Elements in the sequence frequently have parts or subsequences

Alignment

Molecular Sequence

- Identify homologies by position
- Small, fixed vocabulary virtually eliminates need for similarity metric
- Generally phylogenetic

Behavior Sequence

- Identify homologies by semantic similarity and position
- Events may expand into their own subsequences
- Not necessarily phylogenetic

What about using ontologies to compare structured characters?

What about using ontologies to compare structured characters?

Like sequences of behavior?

Questions

- Where do sequences differ?
- Which positions show the greatest diversity?
- Do positions vary differently in different lineages?
- Do sequences differ in global measures of complexity?
- What is the best model of sequence change?

Alignment with Trees

- Assigning homologies
 - Human assertions
 - Machine inferences
 - Name matching
 - Name matching plus similar pattern of relations
- Assessing reliability

Questions

- Where do sequences differ?
- Which positions show the greatest diversity?
- Do positions vary differently in different lineages?
- Do sequences differ in global measures of complexity?
- What is the best model of sequence change?

Complex Behavior - Challenges

- Where is the variation in complex behavior?
- Identifying homologies
- Are there dependencies
 - Among elements in a complex behavior pattern?
 - In the larger context of the behavior?
- What about variation in 'global measures'
 - Complexity of homologous patterns
 - Correlation with
 - Brain size?
 - Complexity of other behavior patterns?

Applications for comparative methods for complex behavior

- Phylogenetic
- Genetic
- Cultural
- Other Ecological

Extending Ontologies

- Can index and structure observations of individual behavior events
- Can be compared across species
 - Identify homologies
 - Capture 'non-atomic' attributes of behavior
 - E.g., Addition/deletion/reordering of behavior sequences