

Principles for a successful ontology enterprise

- requires widespread use to be effective
- ▶ OBO: includes principles that need to be followed & approximately 60 ontologies. Now in the process of filling the missing ontologies for domains that aren't covered already
- People re-building new ontologies, just because they can't find every term they need in existing ontologies.
- Ontologies are constantly in flux.

Ontology Building

- Every entity in the ontology should refer to some thing that you believe truly exists.
- An ontology is like a science text
- The distinction between Universals vs. instances is analogous to the difference between a catalog (types of instances) & an inventory (actual instances)
- ▶ The importance of definitions in proper Aristotelian form

The spectrum of OBO

- The importance of shared relations
- The Common Anatomical Reference Ontology (CARO) and other anatomies
- A bit on EnvO, used to describe where samples come from.
- Orthogonality so that ontologies work together

What is needed

It is better to try and determine which view on reality is more accurate, despite the difficulty of reaching consensus.

Chris Mungall on PATO

- Uses: genetic mutations, clinical phenotypes (OMIM), autism, neuro-degenerative diseases, environmental qualities, biological process, phylogenetic character states.
- Formal modeling: E+Q, structure of PATO, relational qualities, absence, and so on
- Querying a database of E+Q statements
- Pre vs. post coordination of terms

Paula Mabee's wish list

- What genes underlie a given morphological character?
- What correlations exist between genetics and morphology?
- Models of morphological evolution
- Phenotypic BLAST

Recap

- Develop ontologies for evolutionary work
- Technical resources
 - refine syntax for evolutionary characters
 - to annotate phenotypes
- establish and maintain communication

Synthesis: ontologies needed

Shared taxonomy

What groups have a stake in a shared taxonomy: NCBI, UBIO, tdwg, gbif, EoL, BarCode, ToL projects, ...

Cross anatomical interoperability

- CARO
- Most Recent Common Ancestor
- Homology
- Uberon (Haendel and Mungall)

Synthesis: resources

- Software utilities for collecting, incorporating and tracking community input
- Central Online location for community resources
 - e.g. Ability to know the list of ontologies a given community is using.
- Manual semantic annotation to contribute to online corpus (Phenote/Phenoscape)

Synthesis: community communication

NSF Research Coordination
Networks: funding for meetings to
allow communities to collect shared
resources

Action Items?

- RCN for taxonomy: Paula (PI?), steering committee: (all present?), exchange visits among members.
- RCN for evolutionary processes from RNA, proteins, up to organisms
- RCN for anatomy & development, including synthesizing methodology. This a common interest of both the MOD and evolutionary biology communities.
- Connection to phylogenetics: how to do this properly and with a minimum of pain. How would a phylogenetic matrix map onto an ontology.
- Incremental improvements to annotation tools and strategies.