Skeletal anatomy issues and the Teleost Anatomy Ontology

Wasila Dahdul
Phenoscape Skeletal Anatomy Jamboree
April 9, 2010

Teleost Anatomy Ontology

TAO cloned from ZFA

Zebrafish terms are *is_a* subtypes of teleost terms

TAO: addition of new anatomical terms

- Ontology growth driven by annotation
- Since cloning from Zebrafish Anatomy ontology in 2007,
 686 (391 skeletal) new terms added; total = 2,662 terms

TAO skeletal classification

TAO skeletal classification

Ontology terms and definitions

```
[Term]
id: TAO:0000316
name: basihyal bone
def: "Basihyal bone is a replacement bone that is median and is
   the anterior-most bone of the ventral hyoid
   arch." [TAO:curator]
synonym: "basihyoid" EXACT []
synonym: "glossohyal" EXACT []
is a: TAO:0001637 ! replacement bone
is a: TAO:0001891 ! basihyal element
relationship: develops from TAO:0001510 ! basihyal cartilage
relationship: OBO REL:part of TAO:0001402 ! ventral hyoid arch
                                ventral hyoid
                  replacement
                                    arch
                     bone
                                             basihyal
       basihyal element)
                                            cartilage
                                   /part_of
                         is a
                      is_a
                              basihyal
                                        develops from
                               bone
```

Genus-differentia definitions

An X is a G that D, where:

X: defined class

G: generic class

D: characteristics that distinguish X from its siblings

id: TAO:0000316

name: basihyal bone

def: "Basihyal bone is a replacement bone that is median and

is the anterior-most bone of the ventral hyoid arch."

Universal definitions

Taxonomic information can be recorded in "comment" field

Criteria for creating definitions

- Position
- Composition (tissues, cells, chemical properties)
- Developmental process or origin
- Structure
- Function
- Qualities (shape, color, size etc)

Logical definitions

 Defines the sufficient conditions for a term to be considered a subclass of another term

```
"endochondral bone"
intersection_of: is_a bone
intersection_of: develops_from cartilage
```

 If a term is_a bone AND develops_from cartilage, it is by definition a subclass of endochondral bone

```
"basihyal bone"
relationship: is_a bone
relationship: develops from basihyal cartilage
```

Inferred relationship: is_a endochondral bone

Skeletal elements and tissues

- Distinction between bone as a unit (organ, skeletal element) and the stuff (tissue) that it is made of
- Classification in existing ontologies:
 - Distinction made in FMA, MA and TAO using terms for bone tissue and bone organ/skeletal element
 - Not distinguished only in AAO, XAO, ZFA

Bone development terms

Examples: endochondral ossification, endochondral bone

- Higher level organization:
 - processes (GO)
 - "endochondral ossification", "intramembranous ossification"
 - tissues (MA, TAO/ZFA)
 - "endochondral bone", "intramembranous bone"
- Not represented (FMA, AAO, XAO)

Cell terms

Examples: osteocyte, chondrocyte

- discrepancies among ontologies:
 - Functional classification in CL: osteocyte is_a secretory cell
 - Location in FMA: osteocyte is_a connective tissue cell
 - replicated subset of Cell Ontology terms in TAO/ ZFA
 - small flat list in XAO
 - Not represented in AAO and AMA

Workshop goals

Goal 1: name, define and relate the core vertebrate terms for

SKELETAL ELEMENTS

"units" = skeletal elements? bone organs, cartilage organs?

TISSUES

"stuff" = tissue? bone tissue, cartilage tissue, enamel...

CELLS

terminology; how do cells relate to tissues types?

Goal 2: Represent these terms using logical definitions in a vertebrate ontology framework